In [1]:
import numpy as np
import numpy.linalg as linalg
In [2]:
A = np.matrix([[1,2], [3,4]])
A
Out[2]:
In [3]:
A_inv = linalg.inv(A)
A_inv
Out[3]:
In [4]:
A * A_inv
Out[4]:
The linalg library provides a number of useful linear algebra routines.
In [5]:
eigenvalues, eigenvectors = linalg.eig(A)
eigenvalues
Out[5]:
In [6]:
eigenvectors
Out[6]:
In [7]:
a = np.array([[3, 1], [1,2]])
b = np.array([9,8])
np.linalg.solve(a,b)
Out[7]: